Knots of Genus Two
نویسنده
چکیده
We classify all knot diagrams of genus two and three, and give applications to positive, alternating and homogeneous knots, including a classification of achiral genus 2 alternating knots, slice or achiral 2-almost positive knots, a proof of the 3and 4-move conjectures, and the calculation of the maximal hyperbolic volume for weak genus two knots. We also study the values of the link polynomials at roots of unity, extending denseness results of Jones. Using these values, examples of knots with unsharp Morton (weak genus) inequality are found. Several results are generalized to arbitrary weak genus.
منابع مشابه
Surgery Descriptions and Volumes of Berge Knots I: Large Volume Berge Knots
By obtaining surgery descriptions of knots which lie on the genus one fiber of the trefoil or figure eight knot, we show that these include hyperbolic knots with arbitrarily large volume. These knots admit lens space surgeries and form two families of Berge knots. By way of tangle descriptions we also obtain surgery descriptions for these knots on minimally twisted chain links.
متن کاملThe concordance genus of a knot, II
The concordance genus of a knot K is the minimum three-genus among all knots concordant to K . For prime knots of 10 or fewer crossings there have been three knots for which the concordance genus was unknown. Those three cases are now resolved. Two of the cases are settled using invariants of Levine’s algebraic concordance group. The last example depends on the use of twisted Alexander polynomi...
متن کاملClosed Incompressible Surfaces of Genus Two in 3-bridge Knot Complements
In this paper, we characterize closed incompressible surfaces of genus two in the complements of 3-bridge knots and links. This characterization includes that of essential 2-string tangle decompositions for 3-bridge knots and links.
متن کاملCounting simple knots via arithmetic invariants
Knot theory and arithmetic invariant theory are two fields of mathematics that rely on algebraic invariants. We investigate the connections between the two, and give a framework for addressing asymptotic counting questions relating to knots and knot invariants. We study invariants of simple (2q − 1)-knots when q is odd; these include the Alexander module and Blanchfield pairing. In the case tha...
متن کاملSpiral Knots
Spiral knots are a generalization of torus knots we define by a certain periodic closed braid representation. For spiral knots with prime power period, we calculate their genus, bound their crossing number, and bound their m-alternating excess.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000